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Note 

Lattice Sums for Long-Range Interactions 
Involving Charged Defects in Non-Cubic Ionic Crystals 

Analytic expressions are derived for infinite lattice sums involved in the interaction energy 
of a charged defect with a surrounding non-cubic ionic lattice. 

1. INTRODUCTION 

In recent years the HADES’ computational procedures devised by Norgett [l-4] 
have proved to be an invaluable asset in theoretical studies in ionic crystals (see, for 
example, Mackrodt [5]). The original formulation for cubic systems has now been 
extended to include lattices of arbitrary symmetry [6, 71 so that a wide variety of 
ionic and quasi-ionic materials are now amenable to detailed investigation. An 
important feature of this extension has been the treatment of anisotropic effects in the 
calculation of lattice relaxation [ 71. Norgett’s formulation of the problem [24] based 
on the Mott-Littleton method leads to an energy term, E, for the long-range 
interaction of a charge defect with the surrounding lattice of the form 

E= Q C' qi(5i * Ri)/lRi13, 
I 

in which Q is the effective charge of the defect and qi, ci and R, the charge, 
displacement (relaxation) and distance from the defect, respectively, of the ith ion. 
The restricted sum, Ci, is over the outer part of the crystal away from the defect and 
is evaluated by calculating the complete lattice sum analytically and subtracting the 
explicit sum for the inner region (see, for example, Norgett [3]). For cubic materials 
it can be shown that Eq. (1) reduces to 

E = 3 Q2 c' Kiqi/(Ri14, 
I 

(2) 

in which Ki is the cubic Mott-Littleton factor. For non-cubic materials on the 
otherhand, Eq. (1) reduces to the more general form, 
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in which My” are the corresponding non-cubic Mott-Littleton constants which are 
characteristic of the material in question [7]. Expressions for complete lattice sums of 
the type given in Eq. (2) have been given previously based on extensions of the Ewai 
procedure (see, for example, Tosi [9]), but not those corresponding to Eq. (3), which 
arise from the interaction of charged point defects with a surrounding non-cubic 
lattice. The object of the present work, then, is to provide these expressions, 
have been used extensively in recent calculations [6, 7, lo] without reference, and 
may find further use in alternative treatments of defective non-cubic lattices. 

2. LATTICE SUMS 

We begin by considering the complete lattice sum for cubic materials, viz., 
Ci qJ(Ri/4, for th e d erivation of the analytic form contains the salient feature of the 
more general case. Following Epstein (see, for example, [9]), we consider the 
expression 

all lattice 
ions 

S,(r)= x l/lr - R,14 
1 

together with the identity 

t-2= m 
1 a exp(-ta) da, 

0 

from which we can write 

S,(r) = iwZa da C exp(- ]r - Ri/’ a> 
Jo I 

w; aexp(-/r-Ri/2a)da 

= S&) + S?(r). 

Expanding the Gaussian function, Cj exp(- /r - Ri12 a), as a reciprocal lattice sum 
of the form 

l/~,(~/a)~” 2 S(g) exp(--n2 I g ]“/a + 2x43 . r), 
6 

in which the structure factor, S(g), is given by 

ions in 
unit ceil 

S(g) = 1 exp(2& - 
a 

581/44/l-14 
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S:(r) reduces after some manipulation to 

S:(r) = (2c~m~‘~/u,) 2 S(g) exp(2rcig . r) 

X {exp(-z2 %g ]“/o’) - (z312 1 g I/w) erfc(n 1 g i/w)}. (9) 

ST(r), on the other hand, can be integrated directly to give 

ST(r)=x {l +w2/ri-Ri12} exp(-]r-Ri/2m2)/]r-Ri/4. 
I 

(10) 

The term corresponding to I g I = 0 in Eq. (9) reduces to 2~7c~‘~/v~, in which U, is the 
unit cell volume. This expression for S,(r) is well known and has been discussed by 
Norgett [2], for example. A particular advantage of separating expressions such as 
S,(r) into a reciprocal lattice sum and a direct sum is that the former usually involves 
only a few lattice vectors which are easily calculated, while the latter is highly local, 
and for the most .part need be carried out for only a small number of ions 
surrounding the point, r. 

Turning now to the more general expression of Eq. (3), we consider first the van 
der Waals interaction of an atom or ion at the point, r, with the surrounding lattice. 
This is ‘important both in its own right and as a useful starting point for lattice sums 
involving long-range interactions in non-cubic fields. From the general identity, 

I 
Cc qp+ = u* ex&--ta) da, (11) 

0 

we can write the appropriate lattice sum, S,(r), as 

S,(r) = C l//r - Ri I6 02) 

1 =- 
I 

02daoz~exp(-]r-Ri]2a) 
2 0 I 

+~j~~dan’exp(-lr-RR,‘a)/ 

= S:(r) + Sfr). 

As before, the direct sum, SF(r), can be integrated directly to give 

(13) 

(14) 

Sfj’(r)=x 1+w2~r-Ri/2+~co4~r-Ri~4 
ii 

x exp(- jr - Ri12 w”)/lr - Ri16, 
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while the reciprocal lattice term, S:(r), takes the form 

S:(r) = (n”“/2v,) C S(g) exp(27cig . I)J~~’ cla a”’ exp(-z2 / g 12/a), 
8 

which reduces to 

S:(r) = (on3’2/3v,) C S(g) exp(2nig . r){(w* - 2z2 [pi”) 

X exp(-z2 1 g6\‘/w2) - (~~‘~1 g j/w) crfc(z / g ~/w)}. (I’;“] 

Combining Eqs. (15) and (17), therefore, we have an analytic expression for the 
energy of a van der W&s lattice. 

Now the general exiression of Eq. (3) contains two distinct types of sum, viz,, 
Ci .z://Rjj6 (with T X, and J$) and CiXiZJIRi16 (with yizj, etc.). Once again we 
consider the general expression for the first type of sum, 

Srr;&) = T (z - zJ’/lr - Rjj6, (18) 

which we write as 

%~:6(~) = + da a2 C (z - zi)” exp(- /r - Rj\* a) 
i 

SE”,;6(r) can be integrated by parts to give 

‘f~;6(~)=~(z-Zi)~ l+~~~/r-Ri~~+~w”~r- 
1 I i 

X exp(- /r - Ri/’ o”)/lr - Rij6, iZl> 

in which the lattice sum, as before, includes only a small number of ions around the 
point, P. 

The reciprocal lattice term, Sfz;,( ) r is somewhat more troublesome. We begin by 
considering the Fourier expansion for the expression 

all lattice 
ions 

F,,(r) = x (z - zi)” exp(- jr - Ri12 0”). cw 
I 
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In the usual way we write 

and 

4,(r) = l/v, ~.L,(g) expWg - r) 
B 

(23) 

‘ =wj d3r z2 exp(--w2v2 - 2rcig . r) (25) 
all space 

= Sk) .m3>. (26) 

Transforming to cylindrical co-ordinates, z, p and @, it can be shown after some 
manipulation that the Fourier coefficients, f;,(g), are given by 

f&(g) = $r3~2~-7(w2 - 2n2 1gj2 cos2 a) exp(--n* /g)2/w2), (27) 

in which a is the polar angle of the reciprocal lattice vector g, i.e., 

cos a = g,/g. (28) 

Thus, S$Jr) is given by 

S&,(r) = (7~“~/4u,) 2 S(g) jy* da a-““(a - 2n2 [g 1’ cos* a) exp(-z2 1 g j2/a), (29) 
B 

which after further manipulation can be shown to reduce to the form 

X&,(r) = (~713’2/2~,) C sWw4--n2 /g12/w2) 

- [n3j2 Jgl (l’f cos2 a)/co] erfc(z Ig//w)}. (30) 

The term corresponding to lgl = 0 reduces to (07r~‘~/2v,. Similiar expressions hold for 
S!&(r) and Sty;,(r) with 

cm P = g,/g, v = x, y, (31) 

in place of cos (x in Eqs. (29j and (30). 
Cross terms such as xi x~zJIR,I~ can be treated in much the same way. Thus, the 

direct lattice terms, SD xr;6(r), etc., are given immediately by 

S~&)=~(x-xi)@-zj) l+~~/r-R~(~++~~lr-R~/~ 
1 I 

: exp(- Ir - Rij2 ci’)/lr - Rij6, etc. (32) 
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The Fourier coeffrcientsf~,(g), etc., can be shown to take the form 

“G(s> = -W’“/4’ Id2 sin a cos a exp(-7r2 1 

from which the reciprocal lattice term is finally given by 

(33) 

S&:,(r) = -(wn3’“/2v,) C S(g)(n”’ /g I/co) sin a cos a erfc(rz j gl/co), (34) 
B 

and likewise for SR Yz;6(r), etc. All cross terms corresponding to lg/ = 0 are ide~tica~~~~ 
zero. 

These expressions have been implemented in HADES and other corn~~tat~o~a~ 
procedures for the calculation of defect energies in non-cubic ionic materials 
16, 7, 101. 
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